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Abstract

We demonstrate here, for the first time, the constitutive scaling approach applied to simulate a fully compressible, non-isothermal gas
microflows within a mainstream computational physics framework. First, the physics underlying constitutive-relation scaling models is
discussed, including the effects of velocity slip, temperature jump and the Knudsen layer. Results for Couette-type flows in micro-chan-
nels, including heat transfer effects, are then reported and we show comparisons with both traditional Navier–Stokes–Fourier solutions
and independent numerical studies. We discuss the limitations of the constitutive scaling process, such as the breakdown of the model as
the Knudsen number increases and the influence of the wall interaction model on the numerical results. Advantages of the constitutive
scaling technique are described, with particular reference to the practicality of using it for microscale engineering design.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

At the macroscale, engineers routinely use computa-
tional fluid dynamics (CFD) methods to design fluid flow
and heat transfer systems. However, at the microscale,
where rarefaction becomes significant, gas flows are often
highly non-equilibrium in nature and are no longer ade-
quately represented by the Navier–Stokes–Fourier (N–S–
F) equations of continuum fluid dynamics. New and inno-
vative numerical models must therefore be developed in
order to capture the complex rarefaction behaviour
observed at very small physical scales.

In this paper we demonstrate, for the first time, the use
of constitutive scaling for fully-compressible, non-isother-
mal flows in CFD. Constitutive scaling is a phenomenolog-
ical method, in which the constitutive relations
traditionally used with the N–S–F equations are replaced
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by modified functions, curve-fitted from fundamental
kinetic theory and direct simulation Monte-Carlo (DSMC)
results. Scaling the constitutive relations allows us to repre-
sent the gross nonlinear behaviour of gas flows near solid
interfaces, known as Knudsen layers, where intermolecular
collisions do not equilibrate energy and momentum
between a gas and its bounding surfaces.

We implement constitutive scaling for both the momen-
tum and energy equations within a conventional CFD
application, with a range of boundary conditions appropri-
ate to rarefied flows. Then we discuss the practical implica-
tions of using this type of analysis for Couette-type flows in
micro-channel geometries, and investigate a range of shear-
driven gas flows between parallel plates with coupled heat
transfer effects. Our results are shown, and validated
against kinetic theory and DSMC as appropriate, and we
discuss the relative merits of the constitutive scaling
functions we have implemented. Aspects of the simula-
tion are discussed, such as its numerical implementation,
wall-normal shear stress variation, predicted Knudsen
layer structure, and other features of the analysis specific
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Nomenclature

A scaling coefficient
cp specific heat at constant pressure (kJ/kg K)
D scaling coefficient
E scaling coefficient
F 1;2 coefficients in second-order slip boundary condi-

tions
H channel height, characteristic system dimension

(m)
Kn Knudsen number
Ma Mach number
Pr Prandtl number
PreffðnÞ effective Prandtl number
Q
!

heat flux vector at the wall (W/m2)
R specific gas constant (kJ/kg K)
Sðn=kÞ Knudsen layer shape defect
T gas temperature (K)
T jump temperature jump (K)
T wall wall temperature (K)
U gas velocity (m/s)
UMa¼1 gas velocity at Ma ¼ 1 (m/s)
f ðn=kÞ scaling function
i
!

n unit vector normal to and away from a wall
n normal distance away from a wall (m)
p pressure (Pa)

q! tangential heat flux (W/m2)
u!slip slip velocity (m/s)
u!wall wall velocity (m/s)
c ratio of specific heats
fslip velocity slip coefficient
fjump temperature jump coefficient
j thermal conductivity (W/mK)
jeffA effective conductivity — Model A (W/mK)
jeffB effective conductivity — Model B (W/mK)
k equilibrium mean free path of the gas (m)
keff effective mean free path (m)
koriginal original mean free path (m)
l dynamic viscosity (kg/m s)
leffA

effective viscosity — Model A (kg/m s)
leffB

effective viscosity — Model B (kg/m s)
P stress tensor at the wall (N/m2)
q gas density (kg/m3)
rU tangential momentum accommodation coeffi-

cient
rT tangential energy accommodation coefficient
s! tangential shear stress (N/m2)

1 identity tensor
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to modelling the combined transfer of energy and momen-
tum in small-scale gas flows. We then draw conclusions as
to the practicality of using the constitutive scaling
approach for engineering design, and we outline avenues
of future research to extend the applicability of the
technique.
2. Physics of rarefied flows

At the macroscale the N–S–F equations can predict gas
flow and heat transfer properties in a wide variety of situa-
tions. These continuum-type equations are only suitable,
however, for small departures from the equilibrium state.
In microscale applications, large departures from local ther-
modynamic equilibrium are common, as gas flows in small-
scale systems may be rarefied even at atmospheric operating
pressures. Rarefaction in small-scale systems is attributable
to the magnitude of the molecular mean free path of the
gas flow relative to the physical system scale. Typically, rar-
efaction is characterised by the Knudsen number, which is
the dimensionless ratio of the molecular mean free path of
the gas, k, to a characteristic system dimension, H

Kn ¼ k
H
; ð1Þ

where the equilibrium molecular mean free path of the gas
is defined here for hard-sphere molecules as
k ¼ l
q

ffiffiffiffiffiffiffiffiffi
p

2RT

r
: ð2Þ
For Kn values less than 0.001, the N–S–F equations remain
valid. In the range 0:001 < Kn < 0:1, boundary conditions
that account for discontinuities of momentum and energy
between solid surfaces and the gas flow (non-equilibrium
flow features known as ‘‘slip” and ‘‘jump”, respectively)
may be used with the N–S–F equations. Using this ap-
proach, it is possible to model weakly-rarefied flows,
although accuracy is limited by the N–S–F equations’
inherent inability to predict the nonlinear structure of the
Knudsen layer (see below).

Throughout this paper Maxwell’s velocity slip boundary
condition will be used, including the effects of thermal
creep [1]

u!slip � u!wall ¼ fslip

2� rU

rU

� �
k
l

s!þ 3

4

Prðc� 1Þ
cP

q!; ð3Þ
where the tangential shear stress is s!¼ ð i
!

n �PÞ�
ð1� i

!
n i
!

nÞ and heat flux is q!¼ Q
!� ð1� i

!
n i
!

nÞ, with
an arrow denoting a vector quantity. The slip coefficient
fslip, equal to 1 in Maxwell’s original derivation, is taken
to be � 0:8 when constitutive-relation scaling methods
are used (as described below) because this value better
approximates the true slip magnitude for gas flow over
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planar surfaces [2]. For temperature jump at solid bound-
aries, Smoluchowski’s description is used [3]

T jump � T wall ¼ fjump

2� rT

rT

� �
2c

cþ 1

� �
k
Pr

oT
on
: ð4Þ

The temperature jump coefficient, fjump, is also taken to be
� 0:8 when constitutive scaling is used and, again, this va-
lue is derived from linearised kinetic theory for gas flow
over planar surfaces [4].

Both Maxwell’s and Smoluchowski’s equations contain
phenomenological accommodation coefficients. In the
velocity slip case, the tangential momentum accommoda-
tion coefficient rU determines the proportion of molecules
reflected specularly (equal to 1� rU ) or diffusely (simply
rU ). The energy accommodation coefficient rT has a similar
effect, prescribing the degree of energy exchange with the
wall. Specular reflection implies that the tangential molec-
ular momentum is unchanged, and that the gas therefore
exerts no tangential stress on the wall. It is also assumed
that no energy exchange takes place between the wall and
the molecule. In the case of diffuse reflection, molecules
are ascribed random velocities with the loss of all of their
tangential momentum on average, and recede at the tem-
perature of the wall.

At Knudsen numbers greater than 0.1, gas flows are said
to be transitional; increasingly fewer intermolecular colli-
sions take place in a given time period, until the flow
becomes free-molecular in nature beyond Kn � 10 [5].
Close to solid surfaces, rarefaction effects are compounded
by the relatively large differences in momentum and energy
between wall molecules and gas molecules. Although there
will be a layer of gas where perfect equilibrium is not
attained within one or two mean free paths of a wall in
any gas based system, it is the increased relative size of
the mean free path in rarefied flows that is important. In
this near-wall region, known as the Knudsen layer, strong
departures from the linear stress/strain-rate (or heat-flux/
temperature-gradient) profile predicted by the N–S–F
equations are observed.

In very small geometries, where Kn is large, it is possible
for the entire flowfield to exhibit nonlinear behaviour, as
the Knudsen layers extending from each wall begin to over-
lap. This can drastically impact macroscopic quantities of
engineering interest, such as mass flowrate and drag force.
As this occurs, the linear constitutive relationships for
shear stress and heat flux used in the N–S–F equations
become increasingly unsuitable.

3. Constitutive-relation scaling

Relatively-high Knudsen number flows may be simu-
lated using continuum fluid dynamics approaches, pro-
vided suitable modifications are made to incorporate at
least some of the nonlinear Knudsen layer effects.

One approach is to use a boundary condition that is sec-
ond-order in Kn. For planar flows, this condition has the
form
uslip ¼ �F 1k
dU
dn
� F 2k

2 d2U
dn2

: ð5Þ

This technique has been used with some success by several
authors (see, e.g., [6]) to predict certain bulk properties,
such as mass flow rates. Its main advantage is that it is sim-
ple to implement but, as discussed in [7], there is no consen-
sus on the two coefficients F 1 and F 2, which makes it
difficult to create a general model. A more promising ap-
proach was proposed in [8], where a second-order set of
boundary conditions was derived from the Burnett equa-
tions (which are constitutive relations second-order in
Kn). However, most of these second-order methods fail
to capture the nonlinear features found in Knudsen layers
and, moreover, tend to overpredict the slip velocity at the
wall.

Instead, the technique we investigate in this paper is the
method of constitutive-relation scaling developed by Lock-
erby et al. [2]. This technique uses linearised kinetic theory
results to determine a phenomenological function f ðn=kÞ
with which to scale the constitutive relationship for shear
stress in planar flows, i.e.

s ¼ l
dU
dn
) s ¼ 1

f ðn=kÞ l
dU
dn

: ð6Þ

The scaling is dependent on normal distance to the nearest
solid surface, n, and the local mean free path, k,

f ðn=kÞ � 1þ 7

10
1þ n

k

� ��3

: ð7Þ

While this specific f ðn=kÞ is derived from kinetic theory, it
is equally possible to use DSMC, molecular dynamics
(MD) or experimental data to determine other case-specific
scaling functions, allowing the constitutive scaling method
to be extended, in principle, to flows of e.g. polyatomic
gases.

This particular constitutive scaling model is derived
from a solution for a relatively low speed, planar flow of
monatomic gas subject to uniform shear stress. While its
applicability should therefore be limited to cases of this
general type, it has been shown to provide reasonably accu-
rate results for some cases that are technically beyond the
scope of its derivation [9].

However, the primary advantage of constitutive scaling
is that it is an efficient method for incorporating some
important rarefaction effects within a continuum frame-
work. It is much less computationally expensive than
DSMC or MD, and the method is integrable into conven-
tional engineering tools such as CFD. This means it has
significant potential advantages for the practical design of
gas-based microsystems.

Several different scaling functions for rarefied micro-
flows have been proposed recently: Kn-dependent functions
[10], and power-law scaling [11], amongst others [12].
In this paper, however, we discuss the models proposed
by Lockerby et al. [2] and Reese et al. [4]. These will
be referred to as Model A and Model B, respectively.



Table 1
Coefficients used in Eqs. (11) and (12) to define the scaling functions of
Model B

l-scaling AKP DKP EKP rU

Coeff. value �2.719 �0.293 0.531 1.0

j-scaling ATJ DTJ ETJ rT

Coeff. value �2.142 �0.745 1.295 1.0
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Fig. 1. Effective viscosities provided by the scaling models, compared to
(constant) nominal viscosity.
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The main difference between these two models is the rela-
tionship between the constitutive scaling functions for
shear stress and for heat flux.

Model A [2]: The function in Eq. (7) is taken alongside
the dynamic viscosity to form an effective viscosity term
that varies with normal distance to the nearest solid sur-
face, i.e.

leffA
¼ l

f ðn=kÞ ; ð8Þ

where the subscript A refers to a quantity used in Model A.
Then, using the definition of Prandtl number, which de-
scribes the relationship between momentum diffusivity
and energy diffusivity, i.e.

Pr ¼ lcp

j
ð9Þ

an expression for scaling the thermal conductivity, j, can
be found: given the hard-sphere, monatomic gas model
condition of Pr ¼ 2=3, then

jeffA ¼
leffA

cp

Pr
¼ 3

2
leffA

cp: ð10Þ

So, in Model A the relative magnitudes of the momentum
and energy diffusivities are preserved from the original
molecular model. This scaling function has been success-
fully applied to several standard benchmark microflows,
including Couette flow, Poiseuille flow, and flow over an
unconfined sphere [2], in addition to cylindrical Couette
flow [9] and flow in constricted microchannels [13].

Model B [4]: Constitutive scaling functions for Knudsen
layers of both momentum and energy were recently pro-
posed in [4], using kinetic theory data from a wide litera-
ture survey to determine effective values of both dynamic
viscosity and thermal conductivity. The expressions for
these effective quantities are of a similar general form, with
the original constitutive constants scaled by normal dis-
tance to the nearest wall and the appropriate accommoda-
tion coefficient for tangential momentum or energy.

From [14], the replacement constitutive relationship for
momentum (i.e. effective viscosity) is

leffB
nð Þ ¼ l

1� AKPðDKP � rU þ EKPÞ 1þ
ffiffi
p
p

2
n
k

� �AKP�1
; ð11Þ

and the scaling function for energy (i.e. effective thermal
conductivity) is

jeffBðnÞ ¼
j

1� ATJðDTJ � rT þ ETJÞ 1þ
ffiffi
p
p

2
n
k

� �ATJ�1
: ð12Þ

The subscripts KP and TJ refer to Kramers’ problem and
the temperature jump problem, which were the kinetic-the-
oretical case studies used in the curve-fitting to derive the
scaling functions; A; D and E are constants generated in
the curve-fitting process, listed in Table 1 for the hard-
sphere molecular model. Note that in this model the diffu-
sivities of momentum and energy are not both scaled in the
same way.
The scaled diffusive quantities in Model A and Model B
are purely effective values, and are not intended to be used
to define physical values of, for example, mean free path or
Prandtl number. Rather, the original viscosity and thermal
conductivity should be used to define physical quantities.
Within a CFD framework, however, it is important that
physical quantities are retrievable from the scaled model.
For example, in the hard-sphere model approximation of
monatomic gases, flows incorporating both momentum
and energy fluxes may be shown to have a constant Prandtl
number, Pr ¼ 2=3 [15]. If this value is not recovered using
the ‘‘true” velocity or temperature profiles produced by
the scaling approach, it is possible that this is due to a
physical inconsistency in the scaling model.

Comparing Models A and B: Figs. 1 and 2 illustrate the
variation of effective dynamic viscosity leff and effective
thermal conductivity jeff , compared to nominal constant
values of l and j, respectively. Model A scales consistently
for both dynamic viscosity and thermal conductivity, pro-
ducing effective quantities 0.59 times their original value at
the wall, and reaching the full value of the original quantity
outside the Knudsen layer region. Model B is seen to apply
different scaling to each quantity, resulting in wall values of
leff ¼ 0:62l and jeff ¼ 0:47j, and again reaching the full
original value outwith the near-wall region of the flow.

Fig. 3 shows the ratio of effective viscosity to effective
thermal conductivity predicted by each scaling model,
which is directly comparable to the effective Prandtl num-
ber (i.e. Pr from Eq. (9), but using effective quantities
and without the specific heat at constant pressure cp as a



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0  0.5 1  1.5 2  2.5

N
on

di
m

en
si

on
al

 th
er

m
al

 c
on

du
ct

iv
ity

, κ
ef

f/κ

Nondimensional normal distance from wall, n/λ

Model A
Model B

Original conductivity

Fig. 2. Effective thermal conductivities provided by the scaling models,
compared to (constant) nominal thermal conductivity.
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Fig. 4. Schematic of Kramers’ problem flow configuration showing
constant applied shear stress, s; traditional, no-slip N–S solution (dotted
line), N–S solution with fictitious slip boundary condition (dashed line)
and true velocity profile (solid line).

Fig. 5. Schematic of the temperature jump problem showing constant
applied heat flux, q; traditional, no-jump N–S–F solution (dotted line), N–
S–F solution with fictitious jump boundary condition (dashed line) and
true temperature profile (solid line).
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coefficient). In the hard-sphere molecular model, only
translatory exchanges of energy are present, leading to a
fixed ratio of momentum to thermal energy exchange for
a fixed collision time, which in turn leads to the constant
Prandtl number condition. What the figure illustrates is
that using Model B effectively induces a difference between
the magnitude of momentum exchange and energy
exchange in any given collision. This violates the constant
Prandtl number condition of the hard-sphere gas model –
which was the model from which the function in Eq. (12)
was derived. As such, we conclude that the use of Model
B may be inappropriate in cases where both momentum
and energy exchange are considered. In isothermal or iso-
flux cases, however, Model B could still represent a legiti-
mate form of constitutive scaling.

4. Half-space problems

In rarefied flows, velocity slip and temperature jump
arise within the Knudsen layer as the difference in the aver-
age molecular properties of the wall and those of the gas at
the wall. The Knudsen layer thickness is the average dis-
tance over which these discontinuities would be equili-
brated in a quiescent gas (or in an evenly heated gas for
the thermal case). The Knudsen layer regions are illus-
trated schematically in Figs. 4 and 5 as extending � 2k
from the planar surface.
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compared to Model A (dashed line) and Model B (dotted line).

1 Very few data points are given in Loyalka’s paper. However, the
authors are satisfied that it remains one of the most reliable available
sources of data for the temperature jump problem.
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4.1. Kramers’ problem

Kramers’ problem (Fig. 4) is the incompressible, iso-
thermal flow of a gas in a half-space under a constant
shear stress that is applied tangentially to a stationary
planar wall. The shear stress generates a linear strain-rate
profile normal to the wall, except in the near-wall Knud-
sen layer region where an increase in strain-rate is
observed. This momentum Knudsen layer arises due to
incomplete accommodation of momentum with the
surface.

Although relatively few experimental results are avail-
able for constant-shear problems, there are many reliable
kinetic theory solutions in the published literature. Typi-
cally, these solutions report a velocity defect, rather than
a velocity profile, varying with normal distance to the sta-
tionary wall. Velocity defect is taken to be the difference
between a standard Navier–Stokes solution to the problem,
with a ‘‘fictitious” slip coefficient applied, typically
fslip ¼ 1:146, and the true velocity profile in the Knudsen
layer [16].

In the derivation of Model B, the concept of velocity
defect was used to define a dimensionless function Sðn=kÞ
describing the spatial structure of the Knudsen layer [14].
This is effectively a shape defect term, describing Knud-
sen layer changes in the near-wall profiles of given mac-
roscopic quantities of interest, such as velocity or
temperature. The profile defects are curve-fit from a wide
range of data to establish the coefficients given in Table
1. By re-casting Eq. (7) in the form of Eqs. (11) and (12),
it is possible to express Model A in the form of Model
B, using coefficient values of A ¼ �2, D ¼ 0 (i.e. the
Model A function is not accommodation-coefficient
dependent) and E ¼ 0:35. Combining Eqs. (9) and (11)
in Ref. [4], we then establish

Sðn=kÞ ¼ ðDrþ EÞ 1þ
ffiffiffi
p
p

2

n
k

� �A

; ð13Þ

where r is the surface accommodation coefficient of
either tangential momentum or energy, and the

ffiffiffi
p
p

=2
term is introduced to convert between those authors’ def-
inition of mean free path and our present definition, Eq.
(2). Using the dimensionless shape defect, Sðn=kÞ, we are
able to compare both constitutive scaling models directly
to the kinetic theory data presented in [16], as shown in
Fig. 6.

It is obvious from Fig. 6 that the Knudsen layer pre-
dicted by Model B is much closer to the kinetic theory data
than the structure predicted by Model A. This would imply
that, at least in this particular case, Model B would be
expected to give more accurate results when applied as a
scaling relationship to the Navier–Stokes equations. It is
noteworthy, however, that very close to the wall even the
curve-fit of Model B fails to capture accurately the gradient
of the shape defect, which determines, in practice, the shape
of the Knudsen layer.
4.2. The temperature jump problem

The temperature jump problem (Fig. 5) is a constant
heat flux in a half-space, applied normally to a planar wall
in a quiescent gas. In the thermal Knudsen layer near the
solid surface the temperature gradient increases, reflecting
the incomplete exchange of thermal energy between the
gas and the wall.

The thermal Knudsen layer structures predicted by the
constitutive scaling models for the temperature jump prob-
lem are shown in Fig. 7, in comparison to kinetic theory
data from [17]1. Again, the shape defect predicted by
Model B would seem to provide a much better representa-
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tion of the thermal Knudsen layer, as observed through the
temperature profile. Model A provides a realistic estimate
of the shape defect gradient, i.e. the form of the thermal
Knudsen layer, but under-predicts the extent of the Knud-
sen layer (the magnitude of the shape defect).

Considered together, Figs. 6 and 7 illustrate that kinetic
models, which only consider transfer of momentum or
energy, not both, appear to predict different Knudsen layer
structures [16,17]. This difference is the source of the vari-
ation in Prandtl number that occurs in Model B. To main-
tain the monatomic, hard-sphere constant Prandtl number
of 2/3, a single Knudsen layer structure, applicable to both
momentum and energy transfer, is required – such as that
shown by Model A. The Model A trace in Figs. 6 and 7
is roughly equidistant between the Kramers’ problem and
temperature jump problem profiles, with a gradient that
reasonably represents both kinetic theory solutions. It is
perhaps for this reason that Model A appears to produce
reasonable results across a range of flow configurations
[2,9,13], although its original derivation was from an iso-
thermal Kramers’ problem case [18].
5. Constitutive scaling in CFD

In order to create a flexible tool suitable for real-world
engineering of gas-based microsystems, we have imple-
mented the constitutive scaling method in the open-source
CFD package, OpenFOAM [19]. OpenFOAM is a finite-
volume numerics package designed to solve systems of
differential equations in arbitrary 3D geometries, using a
series of discrete C++ modules. These modules interact
to create a series of solvers, utilities and libraries that allow
continuum mechanics problems to be pre-processed,
solved, and the results post-processed. The advantages of
using OpenFOAM as a CFD framework in which to imple-
ment constitutive scaling – something that has not been
done before for compressible flows – are that the software
is both flexible and highly extensible. Its hierarchical, open
structure allows the user to make transparent modifications
to the governing equations they wish to solve, to tailor
them to specific applications whilst retaining the benefits
of a stable and general numerical framework.

The particular compressible-flow solver we use in Open-
FOAM, developed originally for macroscale rarefied flows,
is formulated in terms of density, momentum and total
energy. The governing equations are solved in a segregated
manner, followed by a PISO-style pressure correction loop.
A range of numerical discretisation schemes is employed,
with a linear interpolation scheme used throughout to
determine face-centre values from cell-centre values.

The scaling of constitutive relationships can be achieved
in a CFD code through introducing an effective viscosity
and thermal conductivity. We find it convenient to first
re-cast the expression for effective viscosity into an expres-
sion for effective mean free path based on normal distance
to the nearest wall, i.e.
keff ¼
koriginal

f ðn=koriginalÞ
: ð14Þ

The definition of molecular mean free path, Eq. (2), is then
used to define an effective dynamic viscosity

leff ¼
keffqffiffiffiffiffiffi

p
2RT

p : ð15Þ

One motivation to do this is that we postulate that in real
systems, some changes to the mean free path of the gas
would occur in the Knudsen layer region, due both to so-
lid–gas collisions and to the interaction between gas mole-
cules incident to the surface and those reflected from it [20].

However, the primary motivation for the use of an effec-
tive mean free path in constitutive scaling models is that
the strain-rate in Maxwell’s slip Eq. (3), s!=l, increases with
effective viscosity. However, by including the effective viscos-
ity as a function of mean free path, which is, in turn, a func-
tion of wall-normal distance, the true strain-rate at the wall
can be used to determine the slip velocity. In constant-
shear-stress problems, such as Couette flow, we thereby
maintain the correct shear-stress despite the variation in
strain-rate observed through the Knudsen layer. This cannot
be said of other constitutive scaling implementations, which
rely on separate calculation of the viscous stress arising from
an equivalent equilibrium strain-rate profile.
6. Compressible micro-Couette flow

To demonstrate the use of constitutive scaling in a typ-
ical engineering application, we simulate high-speed Cou-
ette flow of argon gas in a 2D channel. This is the first
application of a constitutive scaling method to fully com-
pressible, non-isothermal microflows in CFD. At low
Knudsen numbers, planar Couette flow exhibits a linear
velocity profile, generated by shear, and a parabolic tem-
perature profile, generated by viscous work. As Knudsen
number increases, gas rarefaction alters these velocity and
temperature profiles [21].

The problem we have chosen here is essentially a 1D
flow, but we solve it as a 2D planar flow, and our models
and solvers have been implemented fully in 3D in Open-
FOAM, to enable other more general problems to be inves-
tigated in the future.

The 2D channel configuration is shown in Fig. 8. The
upper wall remains stationary and the lower wall moves
in the positive x-direction at Mach 1 (with the local speed
of sound calculated using the wall temperature), generating
a constant tangential shear stress. The channel length is a
minimum of 60 lm, and in any case sufficiently long as
to allow end effects to become negligible, ensuring that
there is fully developed flow in the centre of the system.
The channel height in the y-direction is varied in order to
determine the Knudsen number of the case. The different
channel heights used are given in Table 2, with correspond-
ing Kn values. For validation purposes, we compare our



0

 0.2

 0.4

 0.6

 0.8

1

0  0.2  0.4  0.6  0.8 1

H
ei

gh
t y

/C
ha

nn
el

 h
ei

gh
t

Velocity U/Wall velocity

Model A - Kn = 0.1
Model B - Kn = 0.1

DSMC - Kn = 0.1

Fig. 9. Micro-Couette velocity profiles predicted by Model A, Model B
and DSMC [22] for Kn ¼ 0:1.

0

 0.2

 0.4

 0.6

 0.8

1

 1.02  1.03  1.04  1.05  1.06  1.07  1.08  1.09  1.1

H
ei

gh
t y

/C
ha

nn
el

 h
ei

gh
t

Temperature T/Wall temperature

Model A - Kn = 0.1
Model B - Kn = 0.1

DSMC - Kn = 0.1

Fig. 10. Micro-Couette temperature profiles predicted by Model A,
Model B and DSMC [22] for Kn ¼ 0:1.

Fig. 8. Couette flow configuration and nomenclature for our compressible
CFD analysis; U Ma¼1 is the velocity applied to move the lower wall at the
local speed of sound.

Table 2
Table of channel heights used to vary Kn in our simulations

Kn 0.01 0.1 0.2 0.5 0.8

H (�10�6 m) 7.09 0.709 0.3545 0.1418 0.0886

1288 L. O’Hare et al. / International Journal of Heat and Mass Transfer 51 (2008) 1281–1292
CFD results up to Kn ¼ 0:5 – a relatively large value for
constitutive scaling [4] – to DSMC data available in [22].

Argon gas at a temperature of 300 K is used as the
working fluid, with both wall temperatures fixed at
300 K. The use of argon makes Ref. [22] a particularly
appropriate source of validation data: it is a monatomic
gas, which is in keeping with the assumptions of molecular
behaviour inherent in the velocity slip and temperature
jump conditions [23], and in the derivation of the constitu-
tive scaling relationships from hard-sphere molecular force
interaction models [2,4].

At the channel ends, a fixed-value boundary condition
on pressure is used, p = 101.325 kPa, and the temperature
and velocity gradients normal to the (parallel) inlet and
outlet faces are set to zero. Velocity slip and temperature
jump boundary conditions (Eqs. (3) and (4)) are used at
the channel walls; tangential accommodation coefficients
of momentum and energy are fixed at rU ¼ rT ¼ 1, with
the slip/jump coefficients fslip ¼ fjump ¼ 0:8. Structured
hexahedral meshes, tested to ensure grid-independent
results, are used in all cases. The cell density increases
towards the channel walls, in order to capture the Knudsen
layer structure accurately.

In combining the transport of both energy and momen-
tum, this shear-driven case exposes weaknesses in Model B.

� The relative diffusivities of energy and momentum for
the monatomic hard-sphere model must be fixed by
the condition Pr ¼ 2=3 – Model B violates this condition
and is therefore, strictly, inappropriate for application
to this case.
� For this case, the velocity profiles produced by Model
B are near-identical to those of Model A, as illus-
trated in Fig. 9, while temperature results from Model
B are somewhat less accurate than those from Model
A (in comparison to DSMC), as illustrated in Fig. 10.
While it is important to note that both models capture
the same type of temperature profile as predicted by
DSMC, with a similar magnitude of the peak (chan-
nel-centre) temperature, there are differences between
the model results and the DSMC data. These may
be attributed to (a) the fact that both models are
derived from linear problems, so may not be applica-
ble to Couette flow where the temperature profile is
parabolic, and (b) that DSMC is able to capture other
rarefaction effects, such as tangential heat fluxes,
which the present models cannot. (The latter fact
may be expected to result in more pronounced diver-
gences between these models and DSMC in simula-
tions of more complicated flow systems.)
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Considering these factors, and the limited applicability of
Model B in terms of recovering a constant Prandtl number
physically, the results we report below are taken from
Model A simulations only.

Fig. 11 shows the velocity cross-channel profiles pre-
dicted using the CFD implementation of Model A for a
range of Kn values (shown as lines), compared to the cor-
responding DSMC data (shown as points) from [22].
Velocity is non-dimensionalised by the velocity of the mov-
ing lower wall; the spatial position in the y-direction is non-
dimensionalised by the appropriate channel height. As the
figure illustrates, the Knudsen layer structure is represented
relatively well by the CFD, although as Kn increases the
deviation from the DSMC data does become more
appreciable.

Fig. 12 shows temperature profiles in the lower half of
the channel for the compressible Couette flow case. Results
obtained using Model A are compared to results from the
standard form of the N–S–F equations. First, the no-slip,
no-jump boundary conditions common to macroscale
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CFD are used; then, these are replaced with slip and jump
boundary conditions from Eqs. (3) and (4). Temperature is
non-dimensionalised by the fixed wall temperature. Results
are shown for two key Kn values, 0.01 and 0.1, which are
close to the lower and upper limits, respectively, of the
slip-flow regime [5]. The no-slip/no-jump model is shown
as a single solid line, which is the same for both of these
Kn values, given that the N–S–F equations fail to predict
altered flow profiles with increasing Kn.

The introduction of slip and jump boundary conditions
improves the performance of the N–S–F model, but non-
linear Knudsen layer effects remain beyond its scope. As
shown in Fig. 12, at the lower limit of the slip regime,
the difference between the N–S–F with slip/jump boundary
conditions and the constitutive-scaling model is small, and
only practically observed as a very slightly increased tem-
perature gradient close to the wall. At this Kn, the scaled
equations and the N–S–F equations return near-identical
temperature jump values at the wall. As Kn increases to
0.1, the difference between the standard N–S–F model
and Model A becomes marked, with Model A predicting
lower temperatures across much of the flow, and a notice-
ably smaller temperature jump at the wall. The tempera-
ture gradient is also seen to increase near the wall,
reflecting the presence of a thermal Knudsen layer – an
effect not captured by the unscaled N–S–F equations,
regardless of the boundary conditions applied. This illus-
trates that even for flows with Kn values traditionally con-
sidered to be part of the slip regime, the structure of the
Knudsen layer can significantly impact macroscopic quan-
tities of interest. When Kn approaches the upper limit of
the slip regime and tends towards the lower limit of the
transition regime, it is important that numerical models
should capture Knudsen layer behaviour.

7. Discussion

One of the primary advantages of constitutive-relation
scaling is that it is quite simple to implement but is able
to capture some of the trends associated with the complex
non-equilibrium physics of the Knudsen layer. When
applied to lower Kn transitional flows, constitutive scaling
can offer greatly improved accuracy over simple N–S–F
solutions in the prediction of macroscopic quantities of
interest, such as mass flowrate [24].

In this paper we have successfully implemented a consti-
tutive scaling approach in conventional CFD. This brings a
great deal of flexibility to the method, moving it away from
its original ‘‘single-user, single-case” scientific basis,
towards suitability for use as a design tool for real engi-
neering problems. The successful analysis we have demon-
strated of a fully-compressible, non-isothermal case,
represents a significant step forward in this respect.

The method could be advanced with the derivation of
new scaling models, in place of the models A and B we have
investigated. Both of these models are phenomenological
in nature, as they are curve-fit from pre-existing (and
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case-specific) Knudsen layer solutions using other indepen-
dent methods. They are also derived from kinetic solutions
that use only the hard-sphere molecular model. A physical
analysis of near-wall intermolecular interactions, and
deriving scaling functions from more complex force–inter-
action laws (e.g. soft-spheres), would provide a more gen-
eral model.

Certain physical flow features, such as wall-normal
shear stresses or tangential heat fluxes, and the Knudsen
minimum, seem to be beyond the scope of existing consti-
tutive scaling within an N–S–F framework. While replacing
the scaled N–S–F equations with a higher-order continuum
model is desirable, no single higher-order equation set has,
as yet, demonstrated universal superiority [24]. Higher-
order models also require additional boundary conditions,
which can be difficult to obtain or prescribe.

While isothermal flow over spheres, Couette flow
between rotating cylinders and flow through channels with
venturi-type constrictions have all been successfully ana-
lysed previously using Model A [2,9,13], it is important
to explore the applicability of the model. For example,
Fig. 13 shows the temperature profile predicted by Model
A for the micro-Couette flow case, with results for the high
Kn value of 0.8 included. The CFD initially shows higher
maximum temperatures and a more linear profile as Kn

increases, comparable to the data available in [22,25]. But
lower maximum temperatures start to appear as
Kn! 0:5, because the Knudsen layers from opposite sides
of the channel begin to interact with each other, and
boundary slip/jump effects increase. The scaling method
effectively prescribes a velocity/temperature gradient
dependent only on normal distance from a surface, and
may not properly account for this physical coupling
between Knudsen layers. It also makes use of Maxwell’s
and Smoluchowski’s phenomenologically-derived bound-
ary conditions for gas–solid interactions and, as Kn

increases, slip/jump effects become dominant, magnifying
errors arising at the system boundaries [18].

The temperature profiles produced are, of course,
accommodation-coefficient dependent. In order to isolate
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Fig. 13. Temperature profiles predicted by Model A, with high-Kn results.
the slip/jump effects, the compressible micro-Couette flow
case detailed above was reassessed using both Model A
(the N-S-F equations scaled using Eqs. 8 and 10) and the
standard unscaled N–S–F equations, with different combi-
nations of tangential accommodation coefficients for
energy and momentum. Two different values of accommo-
dation coefficient were used, first r ¼ 1 for comparison to
Xue’s DSMC [22], then r ¼ 0:8, a value typical of argon
flows in silicon channels [26]. For both simulation types,
four combinations of rU and rT were used: rU ¼ rT ¼ 1;
rU ¼ 0:8 and rT ¼ 1; rU ¼ 1 and rT ¼ 0:8; and finally
rU ¼ rT ¼ 0:8. In the Model A cases, the true microslip
coefficients of f slip ¼ fjump ¼ 0:8 were used, and in the N–
S–F analyses, the standard values of fslip ¼ fjump ¼ 1 were
applied.

Fig. 14 shows results from Model A at Kn values of 0.2,
0.5 and 0.8 when rU ¼ rT ¼ 0:8, comparable to the high-
Kn results shown in Fig. 13 where rU ¼ rT ¼ 1. The
decrease in the accommodation coefficients is seen to
increase the temperature jump at the wall, and the cross-
over of the maximum temperature predictions has occurred
at a much lower Kn. Therefore, even for relatively small
changes in the tangential accommodation coefficients, large
variations in the results of numerical analyses can be
observed. As several recent studies have shown low accom-
modation coefficients to be practically realisable – e.g. rU

values as low as 0.52, arguably, for carbon nanotubes
[27] – different accommodation coefficients, and the accu-
racy with which they are determined in experimental cases,
are likely to have an important effect on many types of con-
tinuum models for rarefied gas flow.

Also of interest is the interaction between the two types
of accommodation coefficient. In N–S–F analyses at high
Kn it was found that when energy and momentum accom-
modation coefficients were equal, at either 0.8 or 1, the pre-
dicted temperature jump at the channel walls was relatively
similar, as is the predicted maximum temperature at the
channel centre. However, if one accommodation coefficient
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is set to 0.8 and the other to 1, the behaviour of the simu-
lation can be significantly altered.

To illustrate, Fig. 15 shows how the maximum predicted
temperature (the temperature at the channel centre) varies
with Kn. Each accommodation coefficient combination dis-
plays a definite peak in the predicted temperature, occur-
ring in the range of Kn values between about 0.15 and
0.45. The largest maximum temperatures are predicted
when the energy accommodation coefficient is at its lowest
value of rT ¼ 0:8, with momentum accommodation coef-
ficient rU ¼ 1. Conversely, when the momentum accom-
modation coefficient is rU ¼ 0:8, and the energy
accommodation remains at rT ¼ 1, the maximum pre-
dicted temperature is at its lowest.

As shown in Fig. 15, these highest and lowest maximum
temperature profiles are equidistant from the ‘‘reference”

state where rU ¼ rT ¼ 1. This implies that energy and
momentum are assumed to be exchanged at the same rate
when Maxwell’s and Smoluchowski’s boundary conditions
are used simultaneously, which is unlikely to be true of any
physical system. For example, returning to our earlier dis-
cussion of Prandtl number, we know the momentum diffu-
sivity to be only a proportion of the energy diffusivity, and
momentum is exchanged at a faster rate than energy [18].
Accommodation coefficients are not physical properties
of a surface, but rather they arise from the interaction
between gas and wall molecules, and little is really known
about the complex physics of gas flow in near-surface
regions. It is therefore likely that more physically-based
boundary conditions, such as Langmuir’s slip model, based
on surface chemistry, would be better suited to many prac-
tical micro-engineering flow simulations [28].

8. Conclusions

In this paper, some of the key physics of rarefied gas
flows have been outlined, including the discontinuities of
energy and momentum at fluid-solid boundaries, and the
behaviour of gas flow in near-wall Knudsen layer regions.
The constitutive scaling approach to modelling the Knud-
sen layer within a conventional continuum fluid dynamics
framework has also been described. The relative merits of
two available constitutive scaling models have been com-
pared, and the models tested using engineering cases.

We have demonstrated here, for the first time, the inte-
gration of a constitutive scaling approach into conven-
tional CFD for fully-compressible, non-isothermal flows,
and have compared our technique with independent
DSMC results. We have also discussed the practical impli-
cations of using this type of simulation approach for micro-
scale gas flows, and have outlined some of its advantages
and disadvantages when compared with alternative
methods.

Future work will include further investigation of consti-
tutive scaling models, and the development of new, more
generally-applicable functions based on analysis of molec-
ular dynamics results for Knudsen layers. We also intend
to assess the range of physically-based boundary condi-
tions, and to make use of our current compressible flow
CFD implementation as an engineering tool for investigat-
ing a number of technological microflow configurations.
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